Aghdam, M. H., & Kabiri, P. (2016). Feature selection for intrusion detection system using ant colony optimization.
IJ Network Security,
18(3), 420-432.
Benaicha, S. E., Saoudi, L., Guermeche, S. E. B., & Lounis, O. (2014). Intrusion detection system using genetic algorithm. 2014 Science and Information Conference,
Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson correlation coefficient. In
Noise reduction in speech processing (pp. 1-4). Springer.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks.
Journal of statistical mechanics: theory and experiment,
2008(10), P10008.
Chae, H.-s., Jo, B.-o., Choi, S.-H., & Park, T.-k. (2013). Feature selection for intrusion detection using nsl-kdd.
Recent advances in computer science,
20132, 184-187.
Chen, M.-H., Chang, P.-C., & Wu, J.-L. (2016). A population-based incremental learning approach with artificial immune system for network intrusion detection.
Engineering Applications of Artificial Intelligence,
51, 171-181.
Goyal, A., & Kumar, C. (2008). GA-NIDS: a genetic algorithm based network intrusion detection system.
Northwestern university.
Kenkre, P. S., Pai, A., & Colaco, L. (2015). Real time intrusion detection and prevention system. Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014,
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95-international conference on neural networks,
Kevric, J., Jukic, S., & Subasi, A. (2017). An effective combining classifier approach using tree algorithms for network intrusion detection.
Neural Computing and Applications,
28(1), 1051-1058.
Mubarak, S. L. (2016). Intrusion Detection System using SVM SOM & NN.
Journal of network and computer applications,
30(1), 114-132.
Muda, Z., Yassin, W., Sulaiman, M., & Udzir, N. (2011). Intrusion detection based on K-Means clustering and Naïve Bayes classification. 2011 7th international conference on information technology in Asia,
Pan, S., Morris, T., & Adhikari, U. (2015). Developing a hybrid intrusion detection system using data mining for power systems.
IEEE Transactions on Smart Grid,
6(6), 3104-3113.
Revathi, S., & Malathi, A. (2013). A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection.
International Journal of Engineering Research & Technology (IJERT),
2(12), 1848-1853.
Rezaeipanah, A., & Ahmadi, G. (2020). Breast Cancer Diagnosis Using Multi-Stage Weight Adjustment In The MLP Neural Network.
The Computer Journal.
Sabharwal, C. L., Hacke, K. R., & St. Clair, D. C. (1992). Formation of clusters and resolution of ordinal attributes in ID3 classification trees. Proceedings of the 1992 ACM/SIGAPP Symposium on Applied computing: technological challenges of the 1990's,
Saha, S., Sairam, A. S., Yadav, A., & Ekbal, A. (2012). Genetic algorithm combined with support vector machine for building an intrusion detection system. Proceedings of the International Conference on Advances in Computing, Communications and Informatics,
Theodoridis, S., & Koutroumbas, K. (2009). Feature generation I: data transformation and dimensionality reduction.
Pattern Recognition, 323-409.
Warsi, S., Rai, Y., & Kushwaha, S. (2015). Selective Iteration based Particle Swarm Optimization (SIPSO) for Intrusion Detection System.
International Journal of Computer Applications,
124(17).
Zuech, R., Khoshgoftaar, T. M., & Wald, R. (2015). Intrusion detection and big heterogeneous data: a survey.
Journal of Big Data,
2(1), 1-41.